
Lecture 8: Midterm Review

Ryan Bernstein

1 Introductory Remarks

• As I’m sure you’re aware, the midterm is on Thursday. Assignment 2 is due that same day.

2 Remarks on the Assignment 1

2.1 Drawing Finite State Machines

2.1.1 ∅ and Σ∗

There seems to have been some confusion about the difference between the following two DFAs:

q0 Σ q0 Σ

The DFA on the left has no accepting states. This means that it rejects all strings, and its language is
therefore the empty language ∅. The DFA on the right, on the other hand, has only accepting states, which
means that it accepts all strings. Its language is therefore Σ∗.

On the question about finite languages, I had a surprising number of people attempt to prove that ∅ was
a finite language by drawing something akin to the machine on the right.

2.1.2 Using Σ-transitions

Σ-transitions—like those shown in the DFAs above—are a useful tool. They can make drawing finite au-
tomata easier, and they can also make those automata alphabet-agnostic. This is useful for languages like ∅
or Σ∗, because these languages behave the same way regardless of the alphabet used in their elements.

There are some times, though, when it’s not appropriate to use Σ. Σ-transitions are a shorthand that we
use to say that we follow this same transition for every character in the alphabet. This means that it’s
only really appropriate to use Σ-transitions in two cases:

1. We’re trying to make a language alphabet-agnostic, in which case we know nothing about the contents
of Σ. Since this means we need to follow the same transition on every character, this is usually only
appropriate when we’re:

1

• Drawing an automaton for a trivial language like ∅ or Σ∗, or

• Drawing a DFA for some language that is dependent on string length alone.

2. We actually want to take the same transition for every character in Σ, but this may not be the case
for other transitions in the state machine. In this case, we must know everything about Σ.

For any language that is not alphabet-agnostic, you should not be using a Σ-transition unless either you
or the question have fully specified your alphabet.

2.2 Things We Cannot Do

An NFA is a 5-tuple (Q,Σ, δ, qstart, F). Nowhere in this do we allow for logical gates, despite how convenient
they might make our lives. If we want to achieve a similar effect, we need to simulate this using only
states.

3 How to Proof

3.1 Constructive Proofs

If you’re asked to show that some language is regular, I can think of exactly two ways to do this (although
there may be more that I haven’t considered):

1. Construct a finite automaton that decides it, or

2. Construct a regular expression that describes it

Similarly, if you’re asked to show that some language is context-free, you can either:

1. Construct a pushdown automaton that decides it, or

2. Construct a context-free grammar that describes it

It is not enough to simply state that such a construction exists. By definition, a language is
regular if there exists some DFA that decides it. Stating “There exists a DFA that decides L” is simply
restating the fact that you are trying to prove.

You must show how such a machine can be built. This is the origin of the name “Proof by construc-
tion”.

If I’m trying to show that context-free languages are closed under concatenation, I’m allowed to instantiate
context-free grammars for my input languages A and B, since I have been told (or am able to safely
assume) that they are context-free. I am not allowed to simply say “Since a context-free grammar exists
that describes A ◦B exists, context-free languages are closed under concatenation.” This is the conclusion
of my proof, but I have to show that I can construct that grammar by adding a new start variable S0 and
a new rule S0 → SASB to prove that this conclusion is valid.

2

3.2 Disproving Closure Properties

If we’re attempting to show that some class of languages is not closed under some operation, we need only
find a single counterexample.

Closure under an operation means that performing that operation on any two members of the set yields a
result that is also a member of that set. If we want to disprove this, we only need a single pair of members
for which this does not work. For instance, if we wanted to prove that the natural numbers are not closed
under subtraction, it is sufficient to point out that 3− 5 = −2.

3.3 Applying the Pumping Lemmas

We can restate the regular language pumping lemma as follows:

If a language A is regular, then there exists some length p such that for any string s ∈ A
with a length of at least p, there exists some x, there exists some y, and there exists some
z such that s = xyz and the following requirements are satisfied:

1. xyiz ∈ A for any i ≥ 0

2. |y| > 0

3. |xz| ≤ p

If we let P be some powerful predicate relation that encompasses the requirements of the pumping lemma,
we can quantify all of this as follows:

∃p∀s∃x∃y∃z∀iPpsxyzi

Since we’re showing that the pumping lemma does not hold for some non-regular language, we want to
negate this:

¬∃p∀s∃x∃y∃z∀iPpsxyzi

Moving the negation inside these quantifiers and attaching it to the pumping lemma P itself yields the
following:

∀p∃s∀x∀y∀z∃i¬Ppsxyzi

If we want to show that this is true, we are allowed to pick any variable preceded by an existential quantifier.
We have to show that the pumping lemma breaks for any value of the universally-quantified variables.

Fortunately, because of the relationship between s, x, y, and z, we are able to restrict the possible values
of these universally-quantified variables. But we are never allowed to explicitly choose a value for x, y, or
z.

3

